ANNUAL WATER QUALITY REPORT
REPORTING YEAR 2020

Presented By
City of Middletown

PWS ID#: 0901712
Count on Us

Delivering high-quality drinking water to our customers involves far more than just pushing water through pipes. Water treatment is a complex, time-consuming process. Because tap water is highly regulated by state and federal laws, water treatment plant and system operators must be licensed and are required to commit to long-term, on-the-job training before becoming fully qualified. Our licensed water professionals have a basic understanding of a wide range of subjects, including mathematics, biology, chemistry, and physics. Some of the tasks they complete on a regular basis include:

- Operating and maintaining equipment to purify and clarify water;
- Monitoring and inspecting machinery, meters, gauges, and operating conditions;
- Conducting tests and inspections on water and evaluating the results;
- Maintaining optimal water chemistry;
- Applying data to formulas that determine treatment requirements, flow levels, and concentration levels;
- Documenting and reporting test results and system operations to regulatory agencies; and
- Serving our community through customer support, education, and outreach.

So, the next time you turn on your faucet, think of the skilled professionals who stand behind each drop.

Public Meetings

How do I participate in decisions concerning my drinking water? Public participation and comments are encouraged at regular meetings of City Council, which are held the 1st and 3rd Tuesdays of the month at 5:30 pm in the City Building lower level Council Chambers. Please visit www.cityofmiddletown.org or call (513) 425-7864 for more information.

Water Conservation Tips

You can play a role in conserving water and saving yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Where Does My Water Come From?

Your drinking water comes from the Great Miami Buried Valley Aquifer. Groundwater production wells produce up to 20 million gallons of drinking water per day. The untreated well water is pumped to the water treatment plant where it is softened using lime, disinfected with chlorine, and then filtered using dual-media water filters. Fluoride is also added to the water as a measure to prevent tooth decay. Middletown maintains established water supply connections with Warren County, Southwest Regional Water District, and the City of Monroe. These emergency connections are available to be used in extraordinary conditions such as drought, source failure, line breaks, fires, and other periods of unusually high water demand.

Quality First

Once again, we are pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2020. As in years past, we are committed to delivering the highest-quality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and community outreach and education while continuing to serve the needs of all our water users. Thank you for allowing us the opportunity to serve you and your family.

We encourage you to share your thoughts with us on the information contained in this report. After all, well-informed customers are our best allies.
About Our Violation

The City of Middletown reported that the 90th percentile for copper was 0.0084 ppm in last year’s CCR for the samples collected throughout the City in 2019. The correct 90th percentile for this contaminant among these samples was actually 0.062 ppm which is still well below the EPA action level of 1.3 ppm.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include: Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife; Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems; Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Safeguard Your Drinking Water

Protection of drinking water is everyone’s responsibility. You can help protect your community’s drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides – They contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use the U.S. EPA’s Adopt Your Watershed to locate groups in your community.
- Organize a storm drain stenciling project with others in your neighborhood. Stencil a message next to the street drain reminding people “Dump No Waste – Drains to River” or “Protect Your Water”. Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy; those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Questions? For more information about this report, or for any questions relating to your drinking water, please call Scott Belcher, Treatment Plant Manager, at (513) 425-7781.
Source Water Protection Plan

Protecting our water source is one important way the City of Middletown limits contaminants in our drinking water. The Ohio Environmental Protection Agency (OEPA) completed a study of the City of Middletown’s source of drinking water to determine its susceptibility. According to this study, the aquifer (water-rich zone) that supplies water to the City of Middletown has a high susceptibility to contamination. This determination is based on the following:

- Lack of a protective layer of clay overlying the aquifer;
- Shallow depth (less than 15 feet below ground surface) of the aquifer;
- The presence of significant potential contaminant sources in the protection area; and
- Past detection of man-made contaminants in Middletown’s aquifer.

The risk of future contamination is being minimized by implementing appropriate protective measures. The City of Middletown has developed and implemented a comprehensive Wellhead/Source Water Protection Plan to help prevent potential contamination from entering the aquifer. The protection plan contains an educational component, source control strategies, a contingency and emergency response plan, and groundwater monitoring strategies. More information about the source water assessment or what consumers can do to help protect the aquifer is available by calling (513) 425-1860 or (513) 425-7781.

Benefit of Chlorination

Disinfection, a chemical process used to control disease-causing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment. By far the most common method of disinfection in North America is chlorination.

Before communities began routinely treating drinking water with chlorine (starting with Chicago and Jersey City in 1908), cholera, typhoid fever, dysentery, and hepatitis A killed thousands of U.S. residents annually. Drinking water chlorination and filtration have helped to virtually eliminate these diseases in the U.S. Significant strides in public health are directly linked to the adoption of drinking water chlorination. In fact, the filtration of drinking water plus the use of chlorine is probably the most significant public health advancement in human history.

How chlorination works:

- **Potent Germicide Reduction** in the level of many disease-causing microorganisms in drinking water to almost immeasurable levels.
- **Taste and Odor Reduction** of many disagreeable tastes and odors like foul-smelling algae secretions, sulfides, and odors from decaying vegetation.
- **Biological Growth Elimination** of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.
- **Chemical Removal** of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. It also helps to remove iron and manganese from raw water.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. A list of laboratories certified in the State of Ohio to test for lead may be found at http://www.epa.ohio.gov/ddagw or by calling (614) 644-2752. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.
Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. Also, the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

Note that we have a current, unconditioned license to operate our water system.

REGULATED SUBSTANCES

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>UNIT OF MEASURE</th>
<th>YEAR SAMPLED</th>
<th>MCL (MRDL)</th>
<th>MCLG (MRDLG)</th>
<th>AMOUNT DETECTED</th>
<th>RANGE LOW-HIGH</th>
<th>VIOLATION</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium (ppm)</td>
<td>2020</td>
<td>2</td>
<td>2</td>
<td>NA</td>
<td>0.0489</td>
<td>NA</td>
<td>No</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chlorine (ppm)</td>
<td>2020</td>
<td>[4]</td>
<td>[4]</td>
<td>0.735</td>
<td>0.67–0.77</td>
<td>No</td>
<td>Water additive used to control microbes</td>
<td></td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>2020</td>
<td>4</td>
<td>4</td>
<td>0.913</td>
<td>0.73–1.18</td>
<td>No</td>
<td>Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
<td></td>
</tr>
<tr>
<td>Haloacetic Acids [HAAs] (ppb)</td>
<td>2020</td>
<td>60</td>
<td>NA</td>
<td>4.70</td>
<td>4.1–4.7</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
<td></td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>2020</td>
<td>10</td>
<td>10</td>
<td>1.6</td>
<td>NA</td>
<td>No</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>TTHMs [Total Trihalomethanes] (ppb)</td>
<td>2020</td>
<td>80</td>
<td>NA</td>
<td>27</td>
<td>20.30–27.0</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
<td></td>
</tr>
</tbody>
</table>

Tap water samples were collected for lead and copper analyses from sample sites throughout the community.

OTHER REGULATED SUBSTANCES

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>UNIT OF MEASURE</th>
<th>YEAR SAMPLED</th>
<th>MCL (MRDL)</th>
<th>MCLG (MRDLG)</th>
<th>AMOUNT DETECTED</th>
<th>RANGE LOW-HIGH</th>
<th>VIOLATION</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>(ppm)</td>
<td>2020</td>
<td>0.006</td>
<td>0.006</td>
<td>0.0017</td>
<td>NA</td>
<td>No</td>
<td>Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>(pCi/L)</td>
<td>2017</td>
<td>3</td>
<td>NA</td>
<td>1.6</td>
<td>NA</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Radium 228</td>
<td>(pCi/L)</td>
<td>2017</td>
<td>1</td>
<td>0.52</td>
<td>NA</td>
<td>No</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
</tbody>
</table>

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).